Source code for dust_extinction.parameter_averages

import importlib.resources as importlib_resources

import numpy as np
from scipy import interpolate

import astropy.units as u
from astropy.table import Table
from astropy.modeling.models import Drude1D, Polynomial1D, PowerLaw1D

from .baseclasses import BaseExtRvModel, BaseExtRvAfAModel
from .helpers import _smoothstep
from .averages import G03_SMCBar
from .shapes import _curve_F99_method, _modified_drude, FM90

# fmt: off
__all__ = ["CCM89", "O94", "F99", "F04", "VCG04", "GCC09", "M14", "G16", "F19",
           "D22", "G23"]
# fmt: on

x_range_CCM89 = [0.3, 10.0]
x_range_O94 = x_range_CCM89
x_range_F99 = [0.3, 10.0]
x_range_F04 = [0.3, 10.0]
x_range_VCG04 = [3.3, 8.0]
x_range_GCC09 = [3.3, 11.0]
x_range_M14 = [0.3, 3.3]
x_range_G16 = [0.3, 10.0]
x_range_G23 = [1.0 / 32.0, 1.0 / 0.0912]


[docs] class CCM89(BaseExtRvModel): r""" Cardelli, Clayton, & Mathis (1989) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Cardelli, Clayton, and Mathis (1989, ApJ, 345, 245) Example showing CCM89 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import CCM89 fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(0.5,10.0,0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = CCM89(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_CCM89
[docs] @staticmethod def evaluate(x, Rv): """ CCM89 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the a & b coefficient vectors a = np.zeros(x.shape) b = np.zeros(x.shape) # define the ranges ir_indxs = np.where(np.logical_and(0.3 <= x, x < 1.1)) opt_indxs = np.where(np.logical_and(1.1 <= x, x < 3.3)) nuv_indxs = np.where(np.logical_and(3.3 <= x, x <= 8.0)) fnuv_indxs = np.where(np.logical_and(5.9 <= x, x <= 8)) fuv_indxs = np.where(np.logical_and(8 < x, x <= 10)) # Infrared y = x[ir_indxs] ** 1.61 a[ir_indxs] = 0.574 * y b[ir_indxs] = -0.527 * y # NIR/optical y = x[opt_indxs] - 1.82 a[opt_indxs] = np.polyval( (0.32999, -0.7753, 0.01979, 0.72085, -0.02427, -0.50447, 0.17699, 1), y ) b[opt_indxs] = np.polyval( (-2.09002, 5.3026, -0.62251, -5.38434, 1.07233, 2.28305, 1.41338, 0), y ) # NUV a[nuv_indxs] = ( 1.752 - 0.316 * x[nuv_indxs] - 0.104 / ((x[nuv_indxs] - 4.67) ** 2 + 0.341) ) b[nuv_indxs] = ( -3.09 + 1.825 * x[nuv_indxs] + 1.206 / ((x[nuv_indxs] - 4.62) ** 2 + 0.263) ) # far-NUV y = x[fnuv_indxs] - 5.9 a[fnuv_indxs] += -0.04473 * (y**2) - 0.009779 * (y**3) b[fnuv_indxs] += 0.2130 * (y**2) + 0.1207 * (y**3) # FUV y = x[fuv_indxs] - 8.0 a[fuv_indxs] = np.polyval((-0.070, 0.137, -0.628, -1.073), y) b[fuv_indxs] = np.polyval((0.374, -0.42, 4.257, 13.67), y) # return A(x)/A(V) return a + b / Rv
[docs] class O94(BaseExtRvModel): r""" O'Donnell (1994) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From O'Donnell (1994, ApJ, 422, 158) Updates/improves the optical portion of the CCM89 model Example showing O94 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import O94 fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(0.5,10.0,0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = O94(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_O94
[docs] @staticmethod def evaluate(x, Rv): """ O94 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the a & b coefficient vectors a = np.zeros(x.shape) b = np.zeros(x.shape) # define the ranges ir_indxs = np.where(np.logical_and(0.3 <= x, x < 1.1)) opt_indxs = np.where(np.logical_and(1.1 <= x, x < 3.3)) nuv_indxs = np.where(np.logical_and(3.3 <= x, x <= 8.0)) fnuv_indxs = np.where(np.logical_and(5.9 <= x, x <= 8)) fuv_indxs = np.where(np.logical_and(8 < x, x <= 10)) # Infrared y = x[ir_indxs] ** 1.61 a[ir_indxs] = 0.574 * y b[ir_indxs] = -0.527 * y # NIR/optical y = x[opt_indxs] - 1.82 a[opt_indxs] = np.polyval( (-0.505, 1.647, -0.827, -1.718, 1.137, 0.701, -0.609, 0.104, 1), y ) b[opt_indxs] = np.polyval( (3.347, -10.805, 5.491, 11.102, -7.985, -3.989, 2.908, 1.952, 0), y ) # NUV a[nuv_indxs] = ( 1.752 - 0.316 * x[nuv_indxs] - 0.104 / ((x[nuv_indxs] - 4.67) ** 2 + 0.341) ) b[nuv_indxs] = ( -3.09 + 1.825 * x[nuv_indxs] + 1.206 / ((x[nuv_indxs] - 4.62) ** 2 + 0.263) ) # far-NUV y = x[fnuv_indxs] - 5.9 a[fnuv_indxs] += -0.04473 * (y**2) - 0.009779 * (y**3) b[fnuv_indxs] += 0.2130 * (y**2) + 0.1207 * (y**3) # FUV y = x[fuv_indxs] - 8.0 a[fuv_indxs] = np.polyval((-0.070, 0.137, -0.628, -1.073), y) b[fuv_indxs] = np.polyval((0.374, -0.42, 4.257, 13.67), y) # return A(x)/A(V) return a + b / Rv
[docs] class F99(BaseExtRvModel): r""" Fitzpatrick (1999) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Fitzpatrick (1999, PASP, 111, 63) Example showing F99 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import F99 fig, ax = plt.subplots() # temp model to get the correct x range text_model = F99() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = F99(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_F99
[docs] @staticmethod def evaluate(x, Rv): """ F99 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly Rv = np.atleast_1d(Rv) # ensure Rv is a single element, not numpy array Rv = Rv[0] # constant terms C3 = 3.23 C4 = 0.41 xo = 4.596 gamma = 0.99 # terms depending on Rv C2 = -0.824 + 4.717 / Rv # original F99 C1-C2 correlation C1 = 2.030 - 3.007 * C2 # spline points optnir_axav_x = 10000.0 / np.array( [26500.0, 12200.0, 6000.0, 5470.0, 4670.0, 4110.0] ) # determine optical/IR values at spline points # Final optical spline point has a leading "-1.208" in Table 4 # of F99, but that does not reproduce Table 3. # Additional indication that this is not correct is from # fm_unred.pro # which is based on FMRCURVE.pro distributed by Fitzpatrick. # --> confirmation needed? # # Also, fm_unred.pro has different coeff and # of terms, # but later work does not include these terms # --> check with Fitzpatrick? opt_axebv_y = np.array( [ -0.426 + 1.0044 * Rv, -0.050 + 1.0016 * Rv, 0.701 + 1.0016 * Rv, 1.208 + 1.0032 * Rv - 0.00033 * (Rv**2), ] ) nir_axebv_y = np.array([0.265, 0.829]) * Rv / 3.1 optnir_axebv_y = np.concatenate([nir_axebv_y, opt_axebv_y]) # return A(x)/A(V) return _curve_F99_method( x, Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axebv_y / Rv, )
[docs] class F04(BaseExtRvModel): r""" Fitzpatrick (2004) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Fitzpatrick (2004, ASP Conf. Ser. 309, Astrophysics of Dust, 33) Equivalent to the F99 model with an updated NIR Rv dependence See also Fitzpatrick & Massa (2007, ApJ, 663, 320) Example showing F04 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import F04 fig, ax = plt.subplots() # temp model to get the correct x range text_model = F04() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = F04(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_F04
[docs] @staticmethod def evaluate(x, Rv): """ F04 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly Rv = np.atleast_1d(Rv) # ensure Rv is a single element, not numpy array Rv = Rv[0] # constant terms C3 = 2.991 C4 = 0.319 xo = 4.592 gamma = 0.922 # original F99 Rv dependence C2 = -0.824 + 4.717 / Rv # updated F04 C1-C2 correlation C1 = 2.18 - 2.91 * C2 # spline points opt_axav_x = 10000.0 / np.array([6000.0, 5470.0, 4670.0, 4110.0]) # **Use NIR spline x values in FM07, clipped to K band for now nir_axav_x = np.array([0.50, 0.75, 1.0]) optnir_axav_x = np.concatenate([nir_axav_x, opt_axav_x]) # **Keep optical spline points from F99: # Final optical spline point has a leading "-1.208" in Table 4 # of F99, but that does not reproduce Table 3. # Additional indication that this is not correct is from # fm_unred.pro # which is based on FMRCURVE.pro distributed by Fitzpatrick. # --> confirmation needed? opt_axebv_y = np.array( [ -0.426 + 1.0044 * Rv, -0.050 + 1.0016 * Rv, 0.701 + 1.0016 * Rv, 1.208 + 1.0032 * Rv - 0.00033 * (Rv**2), ] ) # updated NIR curve from F04, note R dependence nir_axebv_y = (0.63 * Rv - 0.84) * nir_axav_x**1.84 optnir_axebv_y = np.concatenate([nir_axebv_y, opt_axebv_y]) # return A(x)/A(V) return _curve_F99_method( x, Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axebv_y / Rv, )
[docs] class VCG04(BaseExtRvModel): r""" Valencic, Clayton, & Gordon (2004) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Valencic, Clayton, & Gordon (2004, ApJ, 616, 912) Including erratum: 2014, ApJ, 793, 66 This model applies to the UV spectral region all the way to 912 A. This model was not derived for the optical or NIR. Example showing V04 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import VCG04 fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(3.3,8.0, 0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = VCG04(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.12, 0.15, 0.2, 0.3]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_VCG04
[docs] @staticmethod def evaluate(x, Rv): """ VCG04 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the a & b coefficient vectors a = np.zeros(x.shape) b = np.zeros(x.shape) # define the ranges nuv_indxs = np.where(np.logical_and(3.3 <= x, x <= 8.0)) fnuv_indxs = np.where(np.logical_and(5.9 <= x, x <= 8)) # NUV a[nuv_indxs] = ( 1.808 - 0.215 * x[nuv_indxs] - 0.134 / ((x[nuv_indxs] - 4.558) ** 2 + 0.566) ) b[nuv_indxs] = ( -2.350 + 1.403 * x[nuv_indxs] + 1.103 / ((x[nuv_indxs] - 4.587) ** 2 + 0.263) ) # far-NUV y = x[fnuv_indxs] - 5.9 a[fnuv_indxs] += -0.0077 * (y**2) - 0.0030 * (y**3) b[fnuv_indxs] += 0.2060 * (y**2) + 0.0550 * (y**3) # return A(x)/A(V) return a + b / Rv
[docs] class GCC09(BaseExtRvModel): r""" Grodon, Cartledge, & Clayton (2009) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Gordon, Cartledge, & Clayton (2009, ApJ, 705, 1320) Including erratum: 2014, ApJ, 781, 128 This model applies to the UV spectral region all the way to 912 A. This model was not derived for the optical or NIR. Example showing GCC09 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import GCC09 fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(3.3, 11, 0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = GCC09(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.09, 0.1, 0.12, 0.15, 0.2, 0.3]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_GCC09
[docs] @staticmethod def evaluate(x, Rv): """ GCC09 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the a & b coefficient vectors a = np.zeros(x.shape) b = np.zeros(x.shape) # define the ranges nuv_indxs = np.where(np.logical_and(3.3 <= x, x <= 11.0)) fnuv_indxs = np.where(np.logical_and(5.9 <= x, x <= 11.0)) # NUV a[nuv_indxs] = ( 1.894 - 0.373 * x[nuv_indxs] - 0.0101 / ((x[nuv_indxs] - 4.57) ** 2 + 0.0384) ) b[nuv_indxs] = ( -3.490 + 2.057 * x[nuv_indxs] + 0.706 / ((x[nuv_indxs] - 4.59) ** 2 + 0.169) ) # far-NUV y = x[fnuv_indxs] - 5.9 a[fnuv_indxs] += -0.110 * (y**2) - 0.0100 * (y**3) b[fnuv_indxs] += 0.531 * (y**2) + 0.0544 * (y**3) # return A(x)/A(V) return a + b / Rv
[docs] class M14(BaseExtRvModel): r""" Maiz Apellaniz et al (2014) Milky Way & LMC R(V) dependent model Parameters ---------- R5495: float R5495 = A(5485)/E(4405-5495) Spectral equivalent to photometric R(V), standard value is 3.1 Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- M14 R5485-dependent model From Maiz Apellaniz et al. (2014, A&A, 564, 63), following structure of IDL code provided in paper appendix The published UV extinction curve is identical to Clayton, Cardelli, and Mathis (1989, CCM). Forcing the optical section to match smoothly with CCM introduces a non-physical feature at high values of R5495 around 3.9 inverse microns; see section 5 in Maiz Apellaniz et al. (2014) for more discussion. For that reason, we provide the M14 model only through 3.3 inverse microns, the limit of the optical in CCM. R5495 = A(5485)/E(4405-5495) Spectral equivalent to photometric R(V), standard value is 3.1 Example showing M14 curves for a range of R5495 values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import M14 fig, ax = plt.subplots() # temp model to get the correct x range text_model = M14() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron Rvs = ['2.0','3.1','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = M14(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) # for 2nd x-axis with lambda values axis_xs = np.array([0.3, 0.5, 1.0, 2.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = x_range_M14
[docs] @staticmethod def evaluate(x, Rv): """ M14 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly Rv = np.atleast_1d(Rv) # ensure Rv is a single element, not numpy array Rv = Rv[0] # Infrared ai = 0.574 * x**1.61 bi = -0.527 * x**1.61 # Optical x1 = np.array([1.0]) xi1 = x1[0] x2 = np.array([1.15, 1.81984, 2.1, 2.27015, 2.7]) x3 = np.array([3.5, 3.9, 4.0, 4.1, 4.2]) xi3 = x3[-1] a1v = 0.574 * x1**1.61 a1d = 0.574 * 1.61 * xi1**0.61 b1v = -0.527 * x1**1.61 b1d = -0.527 * 1.61 * xi1**0.61 a2v = ( 1 + 0.17699 * (x2 - 1.82) - 0.50447 * (x2 - 1.82) ** 2 - 0.02427 * (x2 - 1.82) ** 3 + 0.72085 * (x2 - 1.82) ** 4 + 0.01979 * (x2 - 1.82) ** 5 - 0.77530 * (x2 - 1.82) ** 6 + 0.32999 * (x2 - 1.82) ** 7 + np.array([0.0, 0.0, -0.011, 0.0, 0.0]) ) b2v = ( 1.41338 * (x2 - 1.82) + 2.28305 * (x2 - 1.82) ** 2 + 1.07233 * (x2 - 1.82) ** 3 - 5.38434 * (x2 - 1.82) ** 4 - 0.62251 * (x2 - 1.82) ** 5 + 5.30260 * (x2 - 1.82) ** 6 - 2.09002 * (x2 - 1.82) ** 7 + np.array([0.0, 0.0, +0.091, 0.0, 0.0]) ) a3v = ( 1.752 - 0.316 * x3 - 0.104 / ((x3 - 4.67) ** 2 + 0.341) + np.array([0.442, 0.341, 0.130, 0.020, 0.000]) ) a3d = -0.316 + 0.104 * 2.0 * (xi3 - 4.67) / ((xi3 - 4.67) ** 2 + 0.341) ** 2 b3v = ( -3.090 + 1.825 * x3 + 1.206 / ((x3 - 4.62) ** 2 + 0.263) - np.array([1.256, 1.021, 0.416, 0.064, 0.000]) ) b3d = 1.825 - 1.206 * 2 * (xi3 - 4.62) / ((xi3 - 4.62) ** 2 + 0.263) ** 2 xn = np.concatenate((x1, x2, x3)) anv = np.concatenate((a1v, a2v, a3v)) bnv = np.concatenate((b1v, b2v, b3v)) a_spl = interpolate.CubicSpline(xn, anv, bc_type=((1, a1d), (1, a3d))) b_spl = interpolate.CubicSpline(xn, bnv, bc_type=((1, b1d), (1, b3d))) av = a_spl(x) bv = b_spl(x) # UV extinction curve in the paper repeats CCM. Forcing the # optical section to match smoothly with CCM introduces a # non-physical feature at high values of R5495 at x = 3.9 # inverse microns. This class does not provide the UV curve, # but the code that would calculate it is included below for # completeness. # Ultraviolet # y = x - 5.9 # fa = np.zeros(x.size) # + (-0.04473*y**2 - 0.009779*y**3)*((x<8)&(x>5.9)) # fb = np.zeros(x.size) + ( 0.2130*y**2 + 0.1207*y**3)*((x<8)&(x>5.9)) # au = 1.752 - 0.316*x - 0.104/((x-4.67)**2 + 0.341) + fa # bu = -3.090 + 1.825*x + 1.206/((x-4.62)**2 + 0.263) + fb # Far ultraviolet # y = x - 8.0 # af = -1.073 - 0.628*y + 0.137*y**2 - 0.070*y**3 # bf = 13.670 + 4.257*y - 0.420*y**2 + 0.374*y**3 # Final result # a = (ai*(x<xi1) + av*((x>xi1) & (x<xi3)) # + au*((x>xi3)&(x<8.0)) + af*(x>8.0)) # b = (bi*(x<xi1) + bv*((x>xi1) & (x<xi3)) # + bu*((x>xi3)&(x<8.0)) + bf*(x>8.0)) # Final result a = ai * (x < xi1) + av * ((x >= xi1) & (x < xi3)) b = bi * (x < xi1) + bv * ((x >= xi1) & (x < xi3)) return a + b / Rv
[docs] class G16(BaseExtRvAfAModel): r""" Gordon et al (2016) Milky Way, LMC, & SMC R(V) and f_A dependent model Mixture model between the F99 R(V) dependent model (component A) and the G03_SMCBar model (component B) Parameters ---------- RvA: float R_A(V) = A(V)/E(B-V) = total-to-selective extinction R(V) of the A component fA: float f_A is the mixture coefficent between the R(V) Raises ------ InputParameterError Input RvA values outside of defined range Input fA values outside of defined range Notes ----- From Gordon et al. (2016, ApJ, 826, 104) Example showing G16 curves for a range of R_A(V) values and f_A values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import G16 fig, ax = plt.subplots() # temp model to get the correct x range text_model = G16() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron Rvs = ['2.0','3.0','4.0','5.0','6.0'] for cur_Rv in Rvs: ext_model = G16(RvA=cur_Rv, fA=1.0) ax.plot(x,ext_model(x),label=r'$R_A(V) = ' + str(cur_Rv) + '$') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best', title=r'$f_A = 1.0$') plt.show() .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import G16 fig, ax = plt.subplots() # temp model to get the correct x range text_model = G16() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron fAs = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] for cur_fA in fAs: ext_model = G16(RvA=3.1, fA=cur_fA) ax.plot(x,ext_model(x),label=r'$f_A = ' + str(cur_fA) + '$') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best', title=r'$R_A(V) = 3.1$') plt.show() """ RvA_range = [2.0, 6.0] fA_range = [0.0, 1.0] x_range = x_range_G16
[docs] @staticmethod def evaluate(x, RvA, fA): """ G16 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly RvA = np.atleast_1d(RvA) # ensure Rv is a single element, not numpy array RvA = RvA[0] # get the A component extinction model extA_model = F99(Rv=RvA) alav_A = extA_model(x / u.micron) # get the B component extinction model extB_model = G03_SMCBar() alav_B = extB_model(x / u.micron) # create the mixture model alav = fA * alav_A + (1.0 - fA) * alav_B # return A(x)/A(V) return alav
[docs] class F19(BaseExtRvModel): r""" Fitzpatrick et al (2019) extinction model calculation Fitzpatrick, Massa, Gordon et al. (2019, ApJ, 886, 108) model. Based on a sample of stars observed spectroscopically in the optical with HST/STIS. Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- F19 Milky Way R(V) dependent extinction model Example showing F19 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import F19 fig, ax = plt.subplots() # temp model to get the correct x range text_model = F19() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron Rvs = [2.0, 3.0, 4.0, 5.0, 6.0] for cur_Rv in Rvs: ext_model = F19(Rv=cur_Rv) ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv)) ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ Rv_range = [2.0, 6.0] x_range = [0.3, 8.7] def __init__(self, Rv=3.1, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: a = Table.read(data_path / "F19_tabulated.dat", format="ascii") # compute E(lambda-55)/E(B-55) on the tabulated x points self.k_rV_tab_x = a["k_3.02"].data + a["deltak"].data * (Rv - 3.10) * 0.990 # setup spline interpolation self.spline_rep = interpolate.splrep(a["x"].data, self.k_rV_tab_x) super().__init__(Rv, **kwargs)
[docs] def evaluate(self, x, Rv): """ F19 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly Rv = np.atleast_1d(Rv) # ensure Rv is a single element, not numpy array Rv = Rv[0] # use spline interpolation to evaluate the curve for the input x values k_rV = interpolate.splev(x, self.spline_rep, der=0) # convert to A(x)/A(55) from E(x-55)/E(44-55) a_rV = k_rV / Rv + 1.0 # return A(x)/A(55) return a_rV
[docs] class D22(BaseExtRvModel): r""" Decleir et al (2022) extinction model calculation Decleir, Gordon, et al. (2022, ApJ, submitted) model. Based on a sample of stars observed spectroscopically in the NIR with IRTF/SpeX. Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- D22 Milky Way R(V) dependent extinction model Example showing D22 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import D22 fig, ax = plt.subplots() # temp model to get the correct x range text_model = D22() # generate the curves and plot them x = np.arange(text_model.x_range[0], text_model.x_range[1], 0.01) / u.micron Rvs = [2.5, 3.1, 4.0, 4.75, 5.5] for cur_Rv in Rvs: ext_model = D22(Rv=cur_Rv) ax.plot(1. / x, ext_model(x), label="R(V) = " + str(cur_Rv)) ax.set_xlabel(r"$\lambda$ [$\mu m$]") ax.set_ylabel(r"$A(x)/A(V)$") ax.legend(loc="best") plt.show() """ Rv_range = [2.5, 5.5] x_range = [1 / 4.0, 1 / 0.80] def __init__(self, Rv=3.1, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: a = Table.read(data_path / "D22_Rv_slope.dat", format="ascii") # setup spline interpolation self.spline_rep = interpolate.splrep(a["wavelength[micron]"].data, a["slope"]) super().__init__(Rv, **kwargs)
[docs] def evaluate(self, x, Rv): """ D22 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # just in case someone calls evaluate explicitly Rv = np.atleast_1d(Rv) # ensure Rv is a single element, not numpy array Rv = Rv[0] # intercepts mod_a = PowerLaw1D(amplitude=0.377, alpha=1.78, x_0=1.0) a = mod_a(1.0 / x) # slopes # from spline interpolation b = interpolate.splev(1.0 / x, self.spline_rep, der=0) # return A(x)/A(V) return a + b * (1.0 / Rv - 1 / 3.1)
[docs] class G23(BaseExtRvModel): r""" Gordon et al. (2023) Milky Way R(V) dependent model Parameters ---------- Rv: float R(V) = A(V)/E(B-V) = total-to-selective extinction Raises ------ InputParameterError Input Rv values outside of defined range Notes ----- From Gordon et al. (2023, ApJ, in press) Example showing G23 curves for a range of R(V) values. .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.parameter_averages import G23 fig, ax = plt.subplots() # generate the curves and plot them lam = np.logspace(np.log10(0.0912), np.log10(30.0), num=1000) * u.micron Rvs = [2.5, 3.1, 4.0, 4.75, 5.5] for cur_Rv in Rvs: ext_model = G23(Rv=cur_Rv) ax.plot(lam,ext_model(lam),label='R(V) = ' + str(cur_Rv)) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('$\lambda$ [$\mu$m]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ Rv_range = [2.3, 5.6] x_range = x_range_G23
[docs] def evaluate(self, x, Rv): """ G23 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the a & b coefficient vectors self.a = np.zeros(x.shape) self.b = np.zeros(x.shape) # define the ranges ir_indxs = np.where(np.logical_and(1.0 / 35.0 <= x, x < 1.0 / 1.0)) opt_indxs = np.where(np.logical_and(1.0 / 1.1 <= x, x < 1.0 / 0.3)) uv_indxs = np.where(np.logical_and(1.0 / 0.3 <= x, x <= 1.0 / 0.09)) # overlap ranges optir_waves = [0.9, 1.1] optir_overlap = (x >= 1.0 / optir_waves[1]) & (x <= 1.0 / optir_waves[0]) uvopt_waves = [0.3, 0.33] uvopt_overlap = (x >= 1.0 / uvopt_waves[1]) & (x <= 1.0 / uvopt_waves[0]) # NIR/MIR # fmt: off # (scale, alpha1, alpha2, swave, swidth), sil1, sil2 ir_a = [0.38526, 1.68467, 0.78791, 4.30578, 4.78338, 0.06652, 9.8434, 2.21205, -0.24703, 0.0267 , 19.58294, 17., -0.27] # fmt: on ir_b = [-1.01251, 1.0, -1.06099] self.a[ir_indxs] = self.nirmir_intercept(x[ir_indxs], ir_a) irpow = PowerLaw1D() irpow.parameters = ir_b self.b[ir_indxs] = irpow(x[ir_indxs]) # optical # fmt: off # polynomial coeffs, ISS1, ISS2, ISS3 opt_a = [-0.35848, 0.7122 , 0.08746, -0.05403, 0.00674, 0.03893, 2.288, 0.243, 0.02965, 2.054, 0.179, 0.01747, 1.587, 0.243] opt_b = [0.12354, -2.68335, 2.01901, -0.39299, 0.03355, 0.18453, 2.288, 0.243, 0.19728, 2.054, 0.179, 0.1713 , 1.587, 0.243] # fmt: on m20_model_a = Polynomial1D(4) + Drude1D() + Drude1D() + Drude1D() m20_model_a.parameters = opt_a self.a[opt_indxs] = m20_model_a(x[opt_indxs]) m20_model_b = Polynomial1D(4) + Drude1D() + Drude1D() + Drude1D() m20_model_b.parameters = opt_b self.b[opt_indxs] = m20_model_b(x[opt_indxs]) # overlap between optical/ir # weights = (1.0 / optir_waves[1] - x[optir_overlap]) / ( # 1.0 / optir_waves[1] - 1.0 / optir_waves[0] # ) weights = _smoothstep( 1.0 / x[optir_overlap], x_min=optir_waves[0], x_max=optir_waves[1], N=1 ) self.a[optir_overlap] = (1.0 - weights) * m20_model_a(x[optir_overlap]) self.a[optir_overlap] += weights * self.nirmir_intercept(x[optir_overlap], ir_a) self.b[optir_overlap] = (1.0 - weights) * m20_model_b(x[optir_overlap]) self.b[optir_overlap] += weights * irpow(x[optir_overlap]) # Ultraviolet uv_a = [0.81297, 0.2775, 1.06295, 0.11303, 4.60, 0.99] uv_b = [-2.97868, 1.89808, 3.10334, 0.65484, 4.60, 0.99] fm90_model_a = FM90() fm90_model_a.parameters = uv_a self.a[uv_indxs] = fm90_model_a(x[uv_indxs] / u.micron) fm90_model_b = FM90() fm90_model_b.parameters = uv_b self.b[uv_indxs] = fm90_model_b(x[uv_indxs] / u.micron) # overlap between uv/optical # weights = (1.0 / uvopt_waves[1] - x[uvopt_overlap]) / ( # 1.0 / uvopt_waves[1] - 1.0 / uvopt_waves[0] # ) weights = _smoothstep( 1.0 / x[uvopt_overlap], x_min=uvopt_waves[0], x_max=uvopt_waves[1], N=1 ) self.a[uvopt_overlap] = (1.0 - weights) * fm90_model_a( x[uvopt_overlap] / u.micron ) self.a[uvopt_overlap] += weights * m20_model_a(x[uvopt_overlap]) self.b[uvopt_overlap] = (1.0 - weights) * fm90_model_b( x[uvopt_overlap] / u.micron ) self.b[uvopt_overlap] += weights * m20_model_b(x[uvopt_overlap]) # return A(x)/A(V) return self.a + self.b * (1 / Rv - 1 / 3.1)
[docs] @staticmethod def nirmir_intercept(x, params): """ Functional form for the NIR/MIR intercept term. Based on modifying the G21 shape model to have two power laws instead of one with a break wavelength. Parameters ---------- x: float expects x in wavenumbers [1/micron] params: floats paramters of function Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] """ wave = 1 / x # fmt: off (scale, alpha, alpha2, swave, swidth, sil1_amp, sil1_center, sil1_fwhm, sil1_asym, sil2_amp, sil2_center, sil2_fwhm, sil2_asym) = params # fmt: on # broken powerlaw with a smooth transition axav_pow1 = scale * (wave ** (-1.0 * alpha)) norm_ratio = swave ** (-1.0 * alpha) / swave ** (-1.0 * alpha2) axav_pow2 = scale * norm_ratio * (wave ** (-1.0 * alpha2)) # use smoothstep to smoothly transition between the two powerlaws weights = _smoothstep( wave, x_min=swave - swidth / 2, x_max=swave + swidth / 2, N=1 ) axav = axav_pow1 * (1.0 - weights) + axav_pow2 * weights # silicate feature drudes axav += _modified_drude(wave, sil1_amp, sil1_center, sil1_fwhm, sil1_asym) axav += _modified_drude(wave, sil2_amp, sil2_center, sil2_fwhm, sil2_asym) return axav