Source code for dust_extinction.averages

import importlib.resources as importlib_resources

import numpy as np
from scipy.interpolate import interp1d
from astropy.table import Table
from astropy.modeling.models import PowerLaw1D

from .baseclasses import BaseExtModel
from .shapes import P92, G21, _curve_F99_method

__all__ = [
    "RL85_MWGC",
    "RRP89_MWGC",
    "B92_MWAvg",
    "G03_SMCBar",
    "G03_LMCAvg",
    "G03_LMC2",
    "I05_MWAvg",
    "CT06_MWGC",
    "CT06_MWLoc",
    "GCC09_MWAvg",
    "F11_MWGC",
    "G21_MWAvg",
    "D22_MWAvg",
    "G24_SMCAvg",
    "G24_SMCBumps",
]


[docs] class RL85_MWGC(BaseExtModel): r""" Reike & Lebofsky (1985) MW Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Rieke & Lebofsky (1985, ApJ,288, 618) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import RL85_MWGC fig, ax = plt.subplots() # define the extinction model ext_model = RL85_MWGC() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='RL85_MWGC') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 13.0, 1.0 / 1.25] Rv = 3.09 # fmt: off obsdata_x = 1.0 / np.array( [13.0, 12.5, 12.0, 11.5, 11.0, 10.5, 10.0, 9.5, 9.0, 8.5, 8.0, 4.8, 3.5, 2.22, 1.65, 1.25] ) obsdata_axav = np.array( [0.027, 0.030, 0.037, 0.047, 0.060, 0.074, 0.083, 0.087, 0.074, 0.043, 0.020, 0.023, 0.058, 0.112, 0.175, 0.282] ) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 1e-6
[docs] @classmethod def evaluate(cls, x): r""" RL85 MWGC function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function using simple linear interpolation # avoids negative values of alav that happens with cubic splines f = interp1d(cls.obsdata_x, cls.obsdata_axav) return f(x)
[docs] class RRP89_MWGC(BaseExtModel): r""" Reike, Rieke, & Paul (1989) MW Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Rieke, Rieke, & Paul (1989, ApJ, 336, 752) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import RRP89_MWGC fig, ax = plt.subplots() # define the extinction model ext_model = RRP89_MWGC() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='RRP89_MWGC') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 13.0, 1.0 / 0.90] Rv = 3.09 # fmt: off obsdata_x = 1.0 / np.array( [0.90, 1.25, 1.6, 2.2, 3.5, 4.8, 8.0, 9.5, 10.6, 11.0, 13.0] ) obsdata_elvebv = np.array( [-1.60, -2.22, -2.55, -2.744, -2.88, -2.99, -3.01, -2.73, -2.87, -2.84, -2.98] ) # fmt: on obsdata_axav = obsdata_elvebv / Rv + 1.0 # accuracy of the observed data based on published table obsdata_tolerance = 1e-6
[docs] @classmethod def evaluate(cls, x): r""" RRP89 MWGC function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function using simple linear interpolation # avoids negative values of alav that happens with cubic splines f = interp1d(cls.obsdata_x, cls.obsdata_axav) return f(x)
[docs] class B92_MWAvg(BaseExtModel): r""" Bastiaansen (1992) Optical Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Bastiaansen (1992, A&AS, 93, 449-462) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import B92_MWAvg fig, ax = plt.subplots() # define the extinction model ext_model = B92_MWAvg() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='B92') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 0.7873, 1.0 / 0.3402] Rv = 3.1 # assumed! # fmt: off obsdata_x = 1.0 / np.array( [0.7873, 0.7505, 0.7102, 0.6681, 0.64, 0.6107, 0.5821, 0.5601, 0.5407, 0.5205, 0.4999, 0.4708, 0.4496, 0.4395, 0.4192, 0.4038, 0.3785, 0.36, 0.3493, 0.3402] ) obsdata_axav = np.array( [0.849, 0.891, 0.941, 0.998, 1.045, 1.088, 1.139, 1.176, 1.226, 1.279, 1.34 , 1.418, 1.473, 1.507, 1.556, 1.595, 1.659, 1.718, 1.761, 1.795] ) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 6e-3
[docs] @classmethod def evaluate(cls, x): """ B92 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function allowing for spline interpolation f = interp1d(cls.obsdata_x, cls.obsdata_axav) return f(x)
[docs] class G03_SMCBar(BaseExtModel): r""" Gordon et al (2003) SMCBar Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2003, ApJ, 594, 279) The observed A(lambda)/A(V) values at 2.198 and 1.25 microns were changed to provide smooth interpolation as noted in Gordon et al. (2016, ApJ, 826, 104) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G03_SMCBar fig, ax = plt.subplots() # define the extinction model ext_model = G03_SMCBar() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='G03 SMCBar') ax.plot(ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 10.0] Rv = 2.74 # fmt: off obsdata_x = np.array( [0.455, 0.606, 0.800, 1.235, 1.538, 1.818, 2.273, 2.703, 3.375, 3.625, 3.875, 4.125, 4.375, 4.625, 4.875, 5.125, 5.375, 5.625, 5.875, 6.125, 6.375, 6.625, 6.875, 7.125, 7.375, 7.625, 7.875, 8.125, 8.375, 8.625] ) obsdata_axav = np.array( [0.110, 0.169, 0.250, 0.567, 0.801, 1.000, 1.374, 1.672, 2.000, 2.220, 2.428, 2.661, 2.947, 3.161, 3.293, 3.489, 3.637, 3.866, 4.013, 4.243, 4.472, 4.776, 5.000, 5.272, 5.575, 5.795, 6.074, 6.297, 6.436, 6.992] ) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 6e-2
[docs] def evaluate(self, x): """ G03 SMCBar function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ C1 = -4.959 C2 = 2.264 C3 = 0.389 C4 = 0.461 xo = 4.6 gamma = 1.0 optnir_axav_x = 1.0 / np.array( [2.198, 1.65, 1.25, 0.81, 0.65, 0.55, 0.44, 0.37] ) # values at 2.198 and 1.25 changed to provide smooth interpolation # as noted in Gordon et al. (2016, ApJ, 826, 104) optnir_axav_y = [0.11, 0.169, 0.25, 0.567, 0.801, 1.00, 1.374, 1.672] # return A(x)/A(V) return _curve_F99_method( x, self.Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axav_y, )
[docs] class G03_LMCAvg(BaseExtModel): r""" Gordon et al (2003) LMCAvg Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2003, ApJ, 594, 279) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G03_LMCAvg fig, ax = plt.subplots() # define the extinction model ext_model = G03_LMCAvg() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='G03 LMCAvg') ax.plot(ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 10.0] Rv = 3.41 # fmt: off obsdata_x = np.array( [0.455, 0.606, 0.800, 1.818, 2.273, 2.703, 3.375, 3.625, 3.875, 4.125, 4.375, 4.625, 4.875, 5.125, 5.375, 5.625, 5.875, 6.125, 6.375, 6.625, 6.875, 7.125, 7.375, 7.625, 7.875, 8.125] ) obsdata_axav = np.array( [0.100, 0.186, 0.257, 1.000, 1.293, 1.518, 1.786, 1.969, 2.149, 2.391, 2.771, 2.967, 2.846, 2.646, 2.565, 2.566, 2.598, 2.607, 2.668, 2.787, 2.874, 2.983, 3.118, 3.231, 3.374, 3.366] ) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 6e-2
[docs] def evaluate(self, x): """ G03 LMCAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ C1 = -0.890 C2 = 0.998 C3 = 2.719 C4 = 0.400 xo = 4.579 gamma = 0.934 optnir_axav_x = 1.0 / np.array([2.198, 1.65, 1.25, 0.55, 0.44, 0.37]) # value at 2.198 changed to provide smooth interpolation # as noted in Gordon et al. (2016, ApJ, 826, 104) for SMCBar optnir_axav_y = [0.10, 0.186, 0.257, 1.000, 1.293, 1.518] # return A(x)/A(V) return _curve_F99_method( x, self.Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axav_y, )
[docs] class G03_LMC2(BaseExtModel): r""" Gordon et al (2003) LMC2 Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2003, ApJ, 594, 279) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G03_LMC2 fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(0.3,10.0,0.1)/u.micron # define the extinction model ext_model = G03_LMC2() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='G03 LMC2') ax.plot(ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 10.0] Rv = 2.76 # fmt: off obsdata_x = np.array( [0.455, 0.606, 0.800, 1.818, 2.273, 2.703, 3.375, 3.625, 3.875, 4.125, 4.375, 4.625, 4.875, 5.125, 5.375, 5.625, 5.875, 6.125, 6.375, 6.625, 6.875, 7.125, 7.375, 7.625, 7.875, 8.125] ) obsdata_axav = np.array( [0.101, 0.150, 0.299, 1.000, 1.349, 1.665, 1.899, 2.067, 2.249, 2.447, 2.777, 2.922, 2.921, 2.812, 2.805, 2.863, 2.932, 3.060, 3.110, 3.299, 3.408, 3.515, 3.670, 3.862, 3.937, 4.055] ) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 6e-2
[docs] def evaluate(self, x): """ G03 LMC2 function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ C1 = -1.475 C2 = 1.132 C3 = 1.463 C4 = 0.294 xo = 4.558 gamma = 0.945 optnir_axav_x = 1.0 / np.array([2.198, 1.65, 1.25, 0.55, 0.44, 0.37]) # value at 1.65 changed to provide smooth interpolation # as noted in Gordon et al. (2016, ApJ, 826, 104) for SMCBar optnir_axav_y = [0.101, 0.15, 0.299, 1.000, 1.349, 1.665] # return A(x)/A(V) return _curve_F99_method( x, self.Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axav_y, )
[docs] class I05_MWAvg(BaseExtModel): r""" Indebetouw et al (2005) MW Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Indebetouw et al. (2005, ApJ, 619, 931) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import I05_MWAvg fig, ax = plt.subplots() # define the extinction model ext_model = I05_MWAvg() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='I05_MWAvg') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 7.76, 1.0 / 1.24] Rv = 3.1 # assumed! # fmt: off obsdata_x = 1.0 / np.array( [1.24, 1.664, 2.164, 3.545, 4.442, 5.675, 7.760] ) obsdata_axav = np.array( [2.50, 1.55, 1.00, 0.56, 0.43, 0.43, 0.43] ) * 0.112 # ak/av = 0.112 (F19, Rv = 3.1) obsdata_axav_unc = np.array( [0.15, 0.08, 0.0, 0.06, 0.08, 0.10, 0.10] ) * 0.112 # ak/av = 0.112 (F19, Rv = 3.1) # fmt: on # accuracy of the observed data based on published table obsdata_tolerance = 1e-6
[docs] def evaluate(self, x): """ I05 MWAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function allowing for spline interpolation f = interp1d(self.obsdata_x, self.obsdata_axav) return f(x)
[docs] class CT06_MWGC(BaseExtModel): r""" Chiar & Tielens (2006) MW Galactic Center Curve Parameters ---------- None Raises ------ None Notes ----- From Chiar & Tielens (2006, ApJ, 637 774) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import CT06_MWGC fig, ax = plt.subplots() # define the extinction model ext_model = CT06_MWGC() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='CT06_MWGC') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 27.0, 1.0 / 1.24] Rv = 3.1 # assumed! def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: a = Table.read( data_path / "CT06_pixiedust.dat", format="ascii.commented_header" ) self.obsdata_x = 1.0 / a["wave"].data # ext is A(lambda)/A(K) # A(K)/A(V) = 0.112 (F19, R(V) = 3.1) self.obsdata_axav = 0.112 * a["galcen"].data # accuracy of the observed data based on published table self.obsdata_tolerance = 1e-6 super().__init__(**kwargs)
[docs] def evaluate(self, x): """ CT06 MWGC function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function allowing for spline interpolation f = interp1d(self.obsdata_x, self.obsdata_axav) return f(x)
[docs] class CT06_MWLoc(BaseExtModel): r""" Chiar & Tielens (2006) MW Local ISM Curve Parameters ---------- None Raises ------ None Notes ----- From Chiar & Tielens (2006, ApJ, 637 774) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import CT06_MWLoc fig, ax = plt.subplots() # define the extinction model ext_model = CT06_MWLoc() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='CT06_MWLoc') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 27.0, 1.0 / 1.24] Rv = 3.1 # assumed! def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: a = Table.read( data_path / "CT06_pixiedust.dat", format="ascii.commented_header" ) self.obsdata_x = 1.0 / a["wave"].data # ext is A(lambda)/A(K) # A(K)/A(V) = 0.112 (F19, R(V) = 3.1) self.obsdata_axav = 0.112 * a["local"].data # accuracy of the observed data based on published table self.obsdata_tolerance = 1e-6 super().__init__(**kwargs)
[docs] def evaluate(self, x): """ CG06 MWLoc function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function allowing for spline interpolation f = interp1d(self.obsdata_x, self.obsdata_axav) return f(x)
[docs] class GCC09_MWAvg(BaseExtModel): r""" Gordon, Cartledge, & Clayton (2009) Milky Way Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon, Cartledge, & Clayton (2009, ApJ, 705, 1320) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import GCC09_MWAvg fig, ax = plt.subplots() # generate the curves and plot them x = np.arange(0.3,1.0/0.0912,0.1)/u.micron # define the extinction model ext_model = GCC09_MWAvg() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='GCC09_MWAvg') ax.errorbar(ext_model.obsdata_x_fuse, ext_model.obsdata_axav_fuse, yerr=ext_model.obsdata_axav_unc_fuse, fmt='ko', label='obsdata (FUSE)') ax.errorbar(ext_model.obsdata_x_iue, ext_model.obsdata_axav_iue, yerr=ext_model.obsdata_axav_unc_iue, fmt='bs', label='obsdata (IUE)') ax.errorbar(ext_model.obsdata_x_bands, ext_model.obsdata_axav_bands, yerr=ext_model.obsdata_axav_unc_bands, fmt='g^', label='obsdata (Opt/NIR)') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.09, 0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 1.0 / 0.0912] Rv = 3.1 def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: # GCC09 sigma clipped average of 75 sightlines a = Table.read( data_path / "GCC09_FUSE.dat", format="ascii.commented_header" ) b = Table.read(data_path / "GCC09_IUE.dat", format="ascii.commented_header") c = Table.read( data_path / "GCC09_PHOT.dat", format="ascii.commented_header" ) # FUSE range self.obsdata_x_fuse = a["x"].data self.obsdata_axav_fuse = a["ext"].data self.obsdata_axav_unc_fuse = a["unc"].data # IUE range self.obsdata_x_iue = b["x"].data self.obsdata_axav_iue = b["ext"].data self.obsdata_axav_unc_iue = b["unc"].data # Opt/NIR range self.obsdata_x_bands = c["x"].data self.obsdata_axav_bands = c["ext"].data self.obsdata_axav_unc_bands = c["unc"].data # put them together self.obsdata_x = np.concatenate( (self.obsdata_x_fuse, self.obsdata_x_iue, self.obsdata_x_bands) ) self.obsdata_axav = np.concatenate( (self.obsdata_axav_fuse, self.obsdata_axav_iue, self.obsdata_axav_bands) ) self.obsdata_axav_unc = np.concatenate( ( self.obsdata_axav_unc_fuse, self.obsdata_axav_unc_iue, self.obsdata_axav_unc_bands, ) ) # accuracy of the observed data based on published table self.obsdata_tolerance = 5e-1 super().__init__(**kwargs)
[docs] def evaluate(self, x): """ GCC09_MWAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # P92 parameters fit to the data using uncs as weights p92_fit = P92( BKG_amp=203.805939127, BKG_lambda=0.0508199427208, BKG_b=88.0591826413, BKG_n=2.0, FUV_amp=5.33962141873, FUV_lambda=0.08, FUV_b=-0.777129536415, FUV_n=3.88322376926, NUV_amp=0.0447023090042, NUV_lambda=0.217548391182, NUV_b=-1.95723797612, NUV_n=2.0, SIL1_amp=0.00264935064935, SIL1_lambda=9.7, SIL1_b=-1.95, SIL1_n=2.0, SIL2_amp=0.00264935064935, SIL2_lambda=18.0, SIL2_b=-1.80, SIL2_n=2.0, FIR_amp=0.01589610389, FIR_lambda=25.0, FIR_b=0.0, FIR_n=2.0, ) # return A(x)/A(V) return p92_fit(x)
[docs] class F11_MWGC(BaseExtModel): r""" Fritz et al (2011) MW Galactic Center Curve Parameters ---------- None Raises ------ None Notes ----- From Fritz et al. (2011, ApJ, 737, 73) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import F11_MWGC fig, ax = plt.subplots() # define the extinction model ext_model = F11_MWGC() # generate the curves and plot them x = np.arange(1.0/ext_model.x_range[1], 1.0/ext_model.x_range[0], 0.1) * u.micron ax.plot(x,ext_model(x),label='F11_MWGC') ax.plot(1.0/ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 19.062, 1.0 / 1.282] Rv = 3.1 # assumed! def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: a = Table.read( data_path / "fritz11_galcenter.dat", format="ascii.commented_header" ) self.obsdata_x = 1.0 / a["wave"].data # ext is total extinction to GalCenter # A(K) = 2.42 # A(K)/A(V) = 0.112 (F19, R(V) = 3.1) self.obsdata_axav = 0.112 * a["ext"].data / 2.42 self.obsdata_axav_unc = 0.112 * a["unc"].data / 2.42 # accuracy of the observed data based on published table self.obsdata_tolerance = 1e-6 super().__init__(**kwargs)
[docs] def evaluate(self, x): """ F11 MWGC function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # define the function allowing for spline interpolation f = interp1d(self.obsdata_x, self.obsdata_axav) return f(x)
[docs] class G21_MWAvg(BaseExtModel): r""" Gordon et al. (2021) Milky Way Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2021, ApJ, 916, 33) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G21_MWAvg fig, ax = plt.subplots() # generate the curves and plot them lam = np.logspace(np.log10(1.01), np.log10(31.9), num=1000) x = (1.0/lam)/u.micron # define the extinction model ext_model = G21_MWAvg() ax.plot(1.0/x,ext_model(x),label='G21_MWAvg') ax.errorbar(1.0/ext_model.obsdata_x_irs, ext_model.obsdata_axav_irs, yerr=ext_model.obsdata_axav_unc_irs, fmt='ko', label='obsdata (IRS)') ax.errorbar(1.0/ext_model.obsdata_x_bands, ext_model.obsdata_axav_bands, yerr=ext_model.obsdata_axav_unc_bands, fmt='g^', label='obsdata (photometry)') ax.set_xlabel(r'$\lambda$ [$\mu m$]') ax.set_ylabel(r'$A(x)/A(V)$') ax.set_xscale('log') ax.set_yscale('log') ax.legend(loc='best') plt.show() """ x_range = [1.0 / 32.0, 1.0] Rv = 3.17 def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: # GCC09 sigma clipped average of 75 sightlines a = Table.read(data_path / "G21_IRS.dat", format="ascii.commented_header") b = Table.read(data_path / "G21_PHOT.dat", format="ascii.commented_header") # IRS range self.obsdata_x_irs = 1.0 / a["wave"].data self.obsdata_axav_irs = a["ext"].data self.obsdata_axav_unc_irs = a["unc"].data # Opt/NIR range self.obsdata_x_bands = 1.0 / b["wave"].data self.obsdata_axav_bands = b["ext"].data self.obsdata_axav_unc_bands = b["unc"].data # put them together self.obsdata_x = np.concatenate((self.obsdata_x_irs, self.obsdata_x_bands)) self.obsdata_axav = np.concatenate( (self.obsdata_axav_irs, self.obsdata_axav_bands) ) self.obsdata_axav_unc = np.concatenate( ( self.obsdata_axav_unc_irs, self.obsdata_axav_unc_bands, ) ) # accuracy of the observed data based on published table self.obsdata_tolerance = 5e-1 super().__init__(**kwargs)
[docs] def evaluate(self, x): """ G21_MWAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # G21 parameters fit to the data using uncs as weights g21_fit = G21( scale=0.366, alpha=1.480, sil1_amp=0.06893, sil1_center=9.865, sil1_fwhm=2.507, sil1_asym=-0.232, sil2_amp=0.02684, sil2_center=19.973, sil2_fwhm=16.989, sil2_asym=-0.273, ) # return A(x)/A(V) # G21 a full dust_extinction model, hence send in x with units return g21_fit(x)
[docs] class D22_MWAvg(BaseExtModel): r""" Decleir et al. (2022) Milky Way Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Decleir et al. (2022, ApJ, submitted) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import D22_MWAvg fig, ax = plt.subplots() # generate the curves and plot them lam = np.logspace(np.log10(0.8), np.log10(4.9), num=1000) x = (1.0 / lam) / u.micron # define the extinction model ext_model = D22_MWAvg() ax.plot(1.0 / x, ext_model(x), label="D22_MWAvg") ax.errorbar( 1.0 / ext_model.obsdata_x, ext_model.obsdata_axav, yerr=ext_model.obsdata_axav_unc, fmt="ko", label="obsdata", ) ax.set_xlabel(r"$\lambda$ [$\mu m$]") ax.set_ylabel(r"$A(x)/A(V)$") ax.set_xscale("log") ax.set_yscale("log") ax.legend(loc="best") plt.show() """ x_range = [1.0 / 5.0, 1.0 / 0.8] Rv = 3.12 def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: # D22 sigma clipped average of 13 diffuse sightlines a = Table.read(data_path / "D22.dat", format="ascii.commented_header") # Spex data self.obsdata_x = 1.0 / a["wavelength[micron]"].data self.obsdata_axav = a["ave"].data self.obsdata_axav_unc = a["ave_unc"].data # accuracy of the observed data based on published table self.obsdata_tolerance = 0.2 # check super().__init__(**kwargs)
[docs] def evaluate(self, x): """ D22_MWAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ # setup the model d22_fit = PowerLaw1D(alpha=1.71, amplitude=0.386, x_0=1.0) # return A(x)/A(V) # Note that model in D22 was done versus wavelength in microns return d22_fit(1.0 / x)
[docs] class G24_SMCAvg(BaseExtModel): r""" Gordon et al (2024) SMC Average Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2024, ApJ, in press) Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G24_SMCAvg fig, ax = plt.subplots() # define the extinction model ext_model = G24_SMCAvg() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='G24 SMC Average') ax.plot(ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 10.0] Rv = 3.02 def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: # D22 sigma clipped average of 13 diffuse sightlines a = Table.read( data_path / "G24_SMCAvg.dat", format="ascii.commented_header" ) # data self.obsdata_x = 1.0 / a["wave"].data self.obsdata_axav = a["A(l)/A(V)"].data self.obsdata_axav_unc = a["unc"].data # accuracy of the observed data based on published table self.obsdata_tolerance = ( 0.1 # large value driven by short wavelength uncertainties ) super().__init__(**kwargs)
[docs] def evaluate(self, x): """ G24 SMCAvg function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ C1 = -5.07 C2 = 2.30 C3 = 0.12 C4 = 0.07 xo = 4.59 gamma = 0.95 optnir_axav_x = 1.0 / np.array([2.198, 1.65, 1.25, 0.55, 0.44, 0.37]) optnir_axav_y = [0.062, 0.125, 0.324, 1.021, 1.349, 1.514] # return A(x)/A(V) return _curve_F99_method( x, self.Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axav_y, )
[docs] class G24_SMCBumps(BaseExtModel): r""" Gordon et al (2024) SMC Bumps Extinction Curve Parameters ---------- None Raises ------ None Notes ----- From Gordon et al. (2024, ApJ, in press) Two data points in the FUV from the data file giving the observed average were removed as they are *very* deviate from the FM90 parametrization. This cause the automated tests to fail. Example showing the average curve .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt import astropy.units as u from dust_extinction.averages import G24_SMCBumps fig, ax = plt.subplots() # define the extinction model ext_model = G24_SMCBumps() # generate the curves and plot them x = np.arange(ext_model.x_range[0], ext_model.x_range[1],0.1)/u.micron ax.plot(x,ext_model(x),label='G24 SMC Bumps') ax.plot(ext_model.obsdata_x, ext_model.obsdata_axav, 'ko', label='obsdata') ax.set_xlabel(r'$x$ [$\mu m^{-1}$]') ax.set_ylabel(r'$A(x)/A(V)$') # for 2nd x-axis with lambda values axis_xs = np.array([0.1, 0.12, 0.15, 0.2, 0.3, 0.5, 1.0]) new_ticks = 1 / axis_xs new_ticks_labels = ["%.2f" % z for z in axis_xs] tax = ax.twiny() tax.set_xlim(ax.get_xlim()) tax.set_xticks(new_ticks) tax.set_xticklabels(new_ticks_labels) tax.set_xlabel(r"$\lambda$ [$\mu$m]") ax.legend(loc='best') plt.show() """ x_range = [0.3, 10.0] Rv = 2.55 def __init__(self, **kwargs): # get the tabulated information ref = importlib_resources.files("dust_extinction") / "data" with importlib_resources.as_file(ref) as data_path: # D22 sigma clipped average of 13 diffuse sightlines a = Table.read( data_path / "G24_SMCBumps.dat", format="ascii.commented_header" ) # data self.obsdata_x = 1.0 / a["wave"].data self.obsdata_axav = a["A(l)/A(V)"].data self.obsdata_axav_unc = a["unc"].data # accuracy of the observed data based on published table self.obsdata_tolerance = ( 0.1 # large value driven by short wavelength uncertainties ) super().__init__(**kwargs)
[docs] def evaluate(self, x): """ G24 SMCBumps function Parameters ---------- x: float expects either x in units of wavelengths or frequency or assumes wavelengths in wavenumbers [1/micron] internally wavenumbers are used Returns ------- axav: np array (float) A(x)/A(V) extinction curve [mag] Raises ------ ValueError Input x values outside of defined range """ C1 = -2.85 C2 = 1.51 C3 = 2.64 C4 = 0.25 xo = 4.73 gamma = 1.15 optnir_axav_x = 1.0 / np.array([2.198, 1.65, 1.25, 0.55, 0.44, 0.37]) optnir_axav_y = [0.055, 0.162, 0.293, 1.017, 1.400, 1.684] # return A(x)/A(V) return _curve_F99_method( x, self.Rv, C1, C2, C3, C4, xo, gamma, optnir_axav_x, optnir_axav_y, )